Notch signaling deficiency underlies age-dependent depletion of satellite cells in muscular dystrophy

نویسندگان

  • Chunhui Jiang
  • Yefei Wen
  • Kazuki Kuroda
  • Kevin Hannon
  • Michael A. Rudnicki
  • Shihuan Kuang
چکیده

Duchenne muscular dystrophy (DMD) is a devastating disease characterized by muscle wasting, loss of mobility and death in early adulthood. Satellite cells are muscle-resident stem cells responsible for the repair and regeneration of damaged muscles. One pathological feature of DMD is the progressive depletion of satellite cells, leading to the failure of muscle repair. Here, we attempted to explore the molecular mechanisms underlying satellite cell ablation in the dystrophin mutant mdx mouse, a well-established model for DMD. Initial muscle degeneration activates satellite cells, resulting in increased satellite cell number in young mdx mice. This is followed by rapid loss of satellite cells with age due to the reduced self-renewal ability of mdx satellite cells. In addition, satellite cell composition is altered even in young mdx mice, with significant reductions in the abundance of non-committed (Pax7+ and Myf5-) satellite cells. Using a Notch-reporter mouse, we found that the mdx satellite cells have reduced activation of Notch signaling, which has been shown to be necessary to maintain satellite cell quiescence and self-renewal. Concomitantly, the expression of Notch1, Notch3, Jag1, Hey1 and HeyL are reduced in the mdx primary myoblast. Finally, we established a mouse model to constitutively activate Notch signaling in satellite cells, and show that Notch activation is sufficient to rescue the self-renewal deficiencies of mdx satellite cells. These results demonstrate that Notch signaling is essential for maintaining the satellite cell pool and that its deficiency leads to depletion of satellite cells in DMD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A POGLUT1 mutation causes a muscular dystrophy with reduced Notch signaling and satellite cell loss

Skeletal muscle regeneration by muscle satellite cells is a physiological mechanism activated upon muscle damage and regulated by Notch signaling. In a family with autosomal recessive limb-girdle muscular dystrophy, we identified a missense mutation in POGLUT1 (protein O-glucosyltransferase 1), an enzyme involved in Notch posttranslational modification and function. In vitro and in vivo experim...

متن کامل

TNF Inhibits Notch-1 in Skeletal Muscle Cells by Ezh2 and DNA Methylation Mediated Repression: Implications in Duchenne Muscular Dystrophy

BACKGROUND Classical NF-kappaB signaling functions as a negative regulator of skeletal myogenesis through potentially multiple mechanisms. The inhibitory actions of TNFalpha on skeletal muscle differentiation are mediated in part through sustained NF-kappaB activity. In dystrophic muscles, NF-kappaB activity is compartmentalized to myofibers to inhibit regeneration by limiting the number of myo...

متن کامل

Nitric Oxide Sustains Long-Term Skeletal Muscle Regeneration by Regulating Fate of Satellite Cells Via Signaling Pathways Requiring Vangl2 and Cyclic GMP

Satellite cells are myogenic precursors that proliferate, activate, and differentiate on muscle injury to sustain the regenerative capacity of adult skeletal muscle; in this process, they self-renew through the return to quiescence of the cycling progeny. This mechanism, while efficient in physiological conditions does not prevent exhaustion of satellite cells in pathologies such as muscular dy...

متن کامل

Further Characterisation of the Molecular Signature of Quiescent and Activated Mouse Muscle Satellite Cells

Satellite cells are the resident stem cells of adult skeletal muscle. To date though, there is a paucity of native markers that can be used to easily identify quiescent satellite cells, with Pax7 probably being the best that is currently available. Here we have further characterized a number of recently described satellite cell markers, and also describe novel ones. Caveolin-1, integrin alpha7 ...

متن کامل

Matrix Metalloproteinase-9 Inhibition Improves Proliferation and Engraftment of Myogenic Cells in Dystrophic Muscle of mdx Mice

Duchenne muscular dystrophy (DMD) caused by loss of cytoskeletal protein dystrophin is a devastating disorder of skeletal muscle. Primary deficiency of dystrophin leads to several secondary pathological changes including fiber degeneration and regeneration, extracellular matrix breakdown, inflammation, and fibrosis. Matrix metalloproteinases (MMPs) are a group of extracellular proteases that ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014